\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx\) [696]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 195 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=-\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {3 c^2 d^2 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 g^{5/2} \sqrt {c d f-a e g}} \]

[Out]

-1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)^2+3/4*c^2*d^2*arctan(g^(1/2)*(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(5/2)/(-a*e*g+c*d*f)^(1/2)-3/4*c*d*(a*d*e+(a
*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^2/(g*x+f)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {876, 888, 211} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {3 c^2 d^2 \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{4 g^{5/2} \sqrt {c d f-a e g}}-\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^3),x]

[Out]

(-3*c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*g^2*Sqrt[d + e*x]*(f + g*x)) - (a*d*e + (c*d^2 + a*e^2
)*x + c*d*e*x^2)^(3/2)/(2*g*(d + e*x)^(3/2)*(f + g*x)^2) + (3*c^2*d^2*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(4*g^(5/2)*Sqrt[c*d*f - a*e*g])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 876

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(n + 1))), x] + Dist[c*(m/(e*g*(n + 1))), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {(3 c d) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^2} \, dx}{4 g} \\ & = -\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {\left (3 c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 g^2} \\ & = -\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {\left (3 c^2 d^2 e^2\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{4 g^2} \\ & = -\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {3 c^2 d^2 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 g^{5/2} \sqrt {c d f-a e g}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.69 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (-\frac {\sqrt {g} (2 a e g+c d (3 f+5 g x))}{(f+g x)^2}+\frac {3 c^2 d^2 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{\sqrt {c d f-a e g} \sqrt {a e+c d x}}\right )}{4 g^{5/2} \sqrt {d+e x}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^3),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-((Sqrt[g]*(2*a*e*g + c*d*(3*f + 5*g*x)))/(f + g*x)^2) + (3*c^2*d^2*ArcTan[(Sq
rt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/(Sqrt[c*d*f - a*e*g]*Sqrt[a*e + c*d*x])))/(4*g^(5/2)*Sqrt[d + e
*x])

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.36

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{2} d^{2} g^{2} x^{2}+6 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{2} d^{2} f g x +3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{2} d^{2} f^{2}+5 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c d g x +2 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a e g +3 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c d f \right )}{4 \sqrt {e x +d}\, \sqrt {c d x +a e}\, g^{2} \left (g x +f \right )^{2} \sqrt {\left (a e g -c d f \right ) g}}\) \(266\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*((c*d*x+a*e)*(e*x+d))^(1/2)*(3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^2*d^2*g^2*x^2+6*arc
tanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^2*d^2*f*g*x+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g
)^(1/2))*c^2*d^2*f^2+5*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c*d*g*x+2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)
^(1/2)*a*e*g+3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^2/(g*x+f)^2/
((a*e*g-c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 399 vs. \(2 (169) = 338\).

Time = 0.34 (sec) , antiderivative size = 840, normalized size of antiderivative = 4.31 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\left [-\frac {3 \, {\left (c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + {\left (2 \, c^{2} d^{2} e f g + c^{2} d^{3} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, c^{2} d^{3} f g\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (3 \, c^{2} d^{2} f^{2} g - a c d e f g^{2} - 2 \, a^{2} e^{2} g^{3} + 5 \, {\left (c^{2} d^{2} f g^{2} - a c d e g^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{8 \, {\left (c d^{2} f^{3} g^{3} - a d e f^{2} g^{4} + {\left (c d e f g^{5} - a e^{2} g^{6}\right )} x^{3} + {\left (2 \, c d e f^{2} g^{4} - a d e g^{6} + {\left (c d^{2} - 2 \, a e^{2}\right )} f g^{5}\right )} x^{2} + {\left (c d e f^{3} g^{3} - 2 \, a d e f g^{5} + {\left (2 \, c d^{2} - a e^{2}\right )} f^{2} g^{4}\right )} x\right )}}, -\frac {3 \, {\left (c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + {\left (2 \, c^{2} d^{2} e f g + c^{2} d^{3} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, c^{2} d^{3} f g\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + {\left (3 \, c^{2} d^{2} f^{2} g - a c d e f g^{2} - 2 \, a^{2} e^{2} g^{3} + 5 \, {\left (c^{2} d^{2} f g^{2} - a c d e g^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{4 \, {\left (c d^{2} f^{3} g^{3} - a d e f^{2} g^{4} + {\left (c d e f g^{5} - a e^{2} g^{6}\right )} x^{3} + {\left (2 \, c d e f^{2} g^{4} - a d e g^{6} + {\left (c d^{2} - 2 \, a e^{2}\right )} f g^{5}\right )} x^{2} + {\left (c d e f^{3} g^{3} - 2 \, a d e f g^{5} + {\left (2 \, c d^{2} - a e^{2}\right )} f^{2} g^{4}\right )} x\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x, algorithm="fricas")

[Out]

[-1/8*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + c^2*d^3*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*c^2*d^3*f
*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x -
2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f +
d*g)*x)) + 2*(3*c^2*d^2*f^2*g - a*c*d*e*f*g^2 - 2*a^2*e^2*g^3 + 5*(c^2*d^2*f*g^2 - a*c*d*e*g^3)*x)*sqrt(c*d*e*
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^3*g^3 - a*d*e*f^2*g^4 + (c*d*e*f*g^5 - a*e^2*g^6)*x^3
 + (2*c*d*e*f^2*g^4 - a*d*e*g^6 + (c*d^2 - 2*a*e^2)*f*g^5)*x^2 + (c*d*e*f^3*g^3 - 2*a*d*e*f*g^5 + (2*c*d^2 - a
*e^2)*f^2*g^4)*x), -1/4*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + c^2*d^3*g^2)*x^2 + (c^2*d^2*e
*f^2 + 2*c^2*d^3*f*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f
*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (3*c^2*d^2*f^2*g - a*c*d*e*f*g^2
- 2*a^2*e^2*g^3 + 5*(c^2*d^2*f*g^2 - a*c*d*e*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)
)/(c*d^2*f^3*g^3 - a*d*e*f^2*g^4 + (c*d*e*f*g^5 - a*e^2*g^6)*x^3 + (2*c*d*e*f^2*g^4 - a*d*e*g^6 + (c*d^2 - 2*a
*e^2)*f*g^5)*x^2 + (c*d*e*f^3*g^3 - 2*a*d*e*f*g^5 + (2*c*d^2 - a*e^2)*f^2*g^4)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{3}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*(g*x + f)^3), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 581 vs. \(2 (169) = 338\).

Time = 0.48 (sec) , antiderivative size = 581, normalized size of antiderivative = 2.98 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {3 \, c^{2} d^{2} {\left | e \right |} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{4 \, \sqrt {c d f g - a e g^{2}} e g^{2}} - \frac {3 \, c^{2} d^{2} e^{2} f^{2} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 6 \, c^{2} d^{3} e f g {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) + 3 \, c^{2} d^{4} g^{2} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 3 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c d e f {\left | e \right |} + 5 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c d^{2} g {\left | e \right |} - 2 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} a e^{2} g {\left | e \right |}}{4 \, {\left (\sqrt {c d f g - a e g^{2}} e^{3} f^{2} g^{2} - 2 \, \sqrt {c d f g - a e g^{2}} d e^{2} f g^{3} + \sqrt {c d f g - a e g^{2}} d^{2} e g^{4}\right )}} - \frac {3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{3} d^{3} e^{2} f {\left | e \right |} - 3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{2} d^{2} e^{3} g {\left | e \right |} + 5 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{2} d^{2} g {\left | e \right |}}{4 \, {\left (c d e^{2} f - a e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} g\right )}^{2} g^{2}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x, algorithm="giac")

[Out]

3/4*c^2*d^2*abs(e)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/(sqrt(c*d*f*g
 - a*e*g^2)*e*g^2) - 1/4*(3*c^2*d^2*e^2*f^2*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)
) - 6*c^2*d^3*e*f*g*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 3*c^2*d^4*g^2*abs(e)
*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 3*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^
2)*c*d*e*f*abs(e) + 5*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c*d^2*g*abs(e) - 2*sqrt(-c*d^2*e + a*e^3)
*sqrt(c*d*f*g - a*e*g^2)*a*e^2*g*abs(e))/(sqrt(c*d*f*g - a*e*g^2)*e^3*f^2*g^2 - 2*sqrt(c*d*f*g - a*e*g^2)*d*e^
2*f*g^3 + sqrt(c*d*f*g - a*e*g^2)*d^2*e*g^4) - 1/4*(3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^3*d^3*e^2*f*ab
s(e) - 3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^2*d^2*e^3*g*abs(e) + 5*((e*x + d)*c*d*e - c*d^2*e + a*e^3
)^(3/2)*c^2*d^2*g*abs(e))/((c*d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g)^2*g^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^3\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^3*(d + e*x)^(3/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^3*(d + e*x)^(3/2)), x)